Abstract

Current problems of filamentous fungi fermentations and their further successful developments as microbial cell factories are dependent on control fungal morphology. In this connection, this work explored new experimental procedures in order to quantitatively check the potential of some culture conditions to induce a determined fungal morphology by altering both hyphal morphology and conidia adhesion capacity. The capacity of environmental conditions to modify hyphal morphology was evaluated by examining the influence of some culture conditions on the cell wall lytic potential of Aspergillus niger MYA 135. The relative value of the cell wall lytic potential was determined by measuring a cell wall lytic enzyme activity such as the mycelium-bound β-N-acetyl-D-glucosaminidase (Mb-NAGase). On the other hand, the quantitative value of conidia adhesion was considered as an index of its aggregation capacity. Concerning microscopic morphology, a highly negative correlation between the hyphal growth unit length (lHGU) and the specific Mb-NAGase activity was found (r = -0.915, P < 0.001). In fact, the environment was able to induce highly branched mycelia only under those culture conditions compatible with specific Mb-NAGase values equal to or higher than 190 U gdry.wt-1. Concerning macroscopic morphology, a low conidia adhesion capacity was followed by a dispersed mycelial growth. In fact, this study showed that conidia adhesion units per ml equal to or higher than 0.50 were necessary to afford pellets formation. In addition, it was also observed that once the pellet was formed the lHGU had an important influence on its final diameter. Finally, the biotechnological significance of such results was discussed as well.

Highlights

  • Filamentous fungi have been extensively used in biotechnological processes as cell factories due to the metabolic versatility of this group of microorganisms

  • The observed hyphal morphology can vary from linear filaments to highly branched structures, while growth morphologies in submerged culture varying from compact pellets to dispersed mycelia

  • New experimental procedures were explored in order to quantitatively check the potential of some culture conditions to induce a determined fungal morphology by altering both hyphal morphology and conidia adhesion capacity

Read more

Summary

Introduction

Filamentous fungi have been extensively used in biotechnological processes as cell factories due to the metabolic versatility of this group of microorganisms. They are known for their capacity to secrete high levels of enzymes, antibiotics, vitamins, polysaccharides and organic acids (Meyer 2008). The observed hyphal morphology can vary from linear filaments to highly branched structures, while growth morphologies in submerged culture varying from compact pellets to dispersed mycelia. Both microscopic and macroscopic morphology affects the broth rheology and in this turn may affect product yield (Grimm et al 2005). Understanding the growth and morphological development during submerged cultures is an important part in studies of the fermentation processes of filamentous fungi (Pera et al 2008, 2010)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call