Abstract
Widely known as an excellent electron transporting material (ETM), pristine fullerene C60 plays a critical role in improving the photovoltaic performance of inverted structure perovskite solar cells (PSCs). However, the imperfect perovskite/C60 interface significantly limits the promotion of device performance and stability due to the weak coordination interactions between bare carbon cages and perovskite. Here, we designed and synthesized three functionalized fulleropyrrolidine ETMs (abbreviated as CEP, CEPE, and CECB), each of which was modified with the same primary terminal (cyanoethyl) and various secondary terminals (phenyl, phenethyl, and chlorobutyl). The resulting CECB-based PSC has a power conversion efficiency (PCE) over 19% and exceptional photo-stability over 1800 h. This work provides significant insight into the targeted terminal design of novel fullerene ETMs for efficient and stable PSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.