Abstract
Traditional ceramic foam and metal fibre media combustion were usually restricted owing to their intrinsic brittleness and easy corrosion, respectively. In order to obtain higher gas permeability, longer durability, and less noxious gas emissions for gas flame combustion, a novel SiC fibre porous medium (FPM) is investigated in this study. SiC fibre mat were firstly produced from chopped SiC fibres using solution dispersion and vacuum filtration, then a boron nitride interphase for antioxidation and subsequent SiC coating for rigidity were deposited by chemical vapor infiltration, resulted in the formation of self-supporting SiC FPM. Findings demonstrate that the microstructure, gas permeability, thermal physical and combustion properties of SiC FPM can be improved by tailoring fibre length. As the fibre length was 4.5 mm, the density of SiC FPM was 0.113 g/cm3, and it exhibited excellent properties in permeability and utilization of fuel gas, pollutant emissions and combustion temperature accompanied by slight reduction in thermal conductivity. Such ultra-light SiC FPM could respond fast during the heating process and help gas mixture burn off.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.