Abstract

Introduction: Approximately 50 million people worldwide have epilepsy, with many not achieving seizure freedom. Organ-on-chip technology, which mimics organ-level physiology, could revolutionize drug development for epilepsy by replacing animal models in preclinical studies. Our goal is to determine if customized micro-physiological systems can lead to tailored drug treatments for epileptic patients. Materials and methods: A comprehensive literature search was conducted utilizing various databases, including PubMed, Ebscohost, Medline, and the National Library of Medicine, using a predetermined search strategy. We focused on articles that addressed the role of personalized micro-physiological systems in individual drug responses and articles that discussed different types of epilepsy, diagnosis, and current treatment options. Additionally, articles that explored the components and design considerations of micro-physiological systems were reviewed to identify challenges and opportunities in drug development for challenging epilepsy cases. Results: The micro-physiological system offers a more accurate and cost-effective alternative to traditional models for assessing drug effects, toxicities, and disease mechanisms. Nevertheless, designing patient-specific models presents critical considerations, including the integration of analytical biosensors and patient-derived cells, while addressing regulatory, material, and biological complexities. Material selection, standardization, integration of vascular systems, cost efficiency, real-time monitoring, and ethical considerations are also crucial to the successful use of this technology in drug development. Conclusion: The future of organ-on-chip technology holds great promise, with the potential to integrate artificial intelligence and machine learning for personalized treatment for epileptic patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call