Abstract
Tailoring the electronic structure of the perovskite oxide could potentially allow dramatic improvements in the properties of cathode materials in proton-conducting solid oxide fuel cells (SOFCs). This has been demonstrated in the case of Mo-doped La0.5Sr0.5FeO3-δ, where the electronic structure of the La0.5Sr0.5FeO3-δ oxide has been changed with the Mo-doping, leading to a less strong metal-oxygen bond as well as a more active surface towards oxygen reduction. As a result, the more active oxygen atoms make the formation of oxygen vacancy and hydration that are critical for protonation more feasible. Furthermore, the electric field induced by Mo-doping provides an additional driving force for the movement of protons, accelerating the proton migrations in the oxide and thus improving the cathode performance. With the Mo-doped La0.5Sr0.5FeO3-δ as the cathode, a proton-conducting SOFC exhibits an impressive fuel cell output of 1174 mW cm−2 at 700 °C that surpasses most of the cells using similar types of cathodes. This study not only provides a proper cathode material without involving cobalt and barium elements but also gives an understanding of the design of the cathode by tailoring the electronic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.