Abstract
Efficient design of optoelectronic devices based on electron intersubband transitions depends critically on the knowledge of the intersubband relaxation times which in turn, depends on electron scattering with LO and acoustic phonons. In this article the intersubband scattering time associated with electron–acoustic-phonon interaction has been discussed in terms of phonon mode quantization and phonon confinement with describing the acoustic phonon dispersion relation in detail by introducing the cut-off frequency for each mode. It has been shown that the quantization of acoustic phonon modes lead to an enhancement in electron–phonon scattering time in AlGaAs quantum well structures. Based on the presented model, a new tailoring method has presented to adjust the electron–phonon scattering time in intersubband-transition-based structures while keeping the electronic properties unaltered. Also, we illustrated that for a quantum well with subband energy separation of ∼30meV, the intersubband scattering time with acoustic-phonon-assisted transitions could be tailored from ∼120ps to increased value of ∼400ps or reduced value of ∼45ps by inserting a 1nm-thickacoustically soft or hard layers, respectively, while keeping the same the initial energy separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Photonics and Nanostructures - Fundamentals and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.