Abstract

Electrochemical biosensors based on structure-switching aptamers offer many advantages because they can operate directly in complex samples and offer the potential to integrate with miniaturized electronics. Unfortunately, these biosensors often suffer from cross-reactivity problems when measuring a target in samples containing other chemically similar molecules, such as precursors or metabolites. While some progress has been made in selecting highly specific aptamers, the discovery of these reagents remains slow and costly. In this work, we demonstrate a novel strategy to distinguish molecules with miniscule difference in chemical composition (such as a single hydroxyl group) - with cross reactive aptamer probes - by tuning the charge state of the surface on which the aptamer probes are immobilized. As an exemplar, we show that our strategy can distinguish between DOX and many structurally similar analytes, including its primary metabolite doxorubicinol (DOXol). We then demonstrate the ability to accurately quantify mixtures of these two molecules based on their differential response to sensors with different surface-charge properties. We believe this methodology is general and can be extended to a broad range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.