Abstract

Metastructure analogs of electromagnetically induced transparency (EIT) provide a new approach for engineering realizations of nonlinear optical manipulations regardless of harsh conditions; further can be employed in polarization conversions for its low-loss transmission and phase modulation. In this work, dual-band EIT in a dielectric-metal hybrid metasurface achieved via providing different coupling channels is theoretically investigated with a maximum group delay of 404 ps. The linear-to-circular polarization conversion (LCPC) behaviors are observed respectively holding the transmittance of 0.58 at 0.68 THz, 0.73 at 0.76 THz, 0.61 at 0.90 THz, 0.53 at 0.99 THz, owning to the asymmetric EIT responses in the transverse magnetic (TM) and transverse electric (TE) modes incidence. On the other hand, phase-transition VO2 is doped to perturb the dark mode resonances. With its conductivity σ = 105 S/m, dual transparency peaks transform into unimodal broadband transmission windows with relative bandwidths of 17.1% and 9.1% under the TE and TM excitations apart. Induced LCPC possesses a bandwidth of 10.4% centered at 0.76 THz attributed to the drastic dispersion. The as-proposed design exploits pattern asymmetry of EIT responses to realize LCPC, promising the wide prospect of reconfigurable multiplexings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call