Abstract

Novel amorphous compounds which could simultaneously use 25% singlet excitons and 75% triplet excitons as the energy source for light amplification enable the reduction of the threshold current density for electrically pumped organic semiconductor laser diodes (OSLDs); however, there is always a trade-off between the high radiative decay rate of the local excited (LE) state that is required for amplified spontaneous emission (ASE) and high exciton utilization benefiting from the charge-transfer (CT) state during electroluminescence (EL). Herein, we have explored a delicate balance to achieve both low ASE threshold and high EL exciton utilization by adopting a carefully tailored hybridized local and charge-transfer (HLCT) molecular design. A series of donor-π-acceptor (D-π-A) molecules (SBz-1, SBz-2 and SBz-3) are synthesized, and the structural change mainly refers to the spatial distance between D and A which could regulate the excited-state character via adjusting the CT length. Notably, the ASE phenomenon with a low threshold (2.97 μJ cm-2) and a high exciton utilization of 57.6% are achieved at the same time for SBz-2 with an appropriate CT length. The results provide guidance for molecular design toward harvesting triplet excitons in organic laser materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call