Abstract
The incorporation of Cu species in TiO2 photocatalysts is critical in photocatalytic CO2 reduction to fuels, but the effect of Cu valence is poorly understood. In this work, Cu/TiO2 (P25) nanoparticle catalysts were prepared by a simple precipitation and calcination method. The as-prepared Cu/TiO2 sample was dominated by Cu2+ species. Thermal pretreatment of the as-prepared samples in He and H2 atmosphere resulted in the transition to a surface dominated by Cu+ and mixed Cu+/Cu0, respectively, confirmed by in situ X-ray photoelectron spectroscopy (XPS) and diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. These thermal pretreatments in reducing atmospheres also induced the formation of defect sites such as oxygen vacancies and Ti3+. The various Cu/TiO2 catalysts were tested in CO2 photoreduction with water vapor under simulated solar irradiation, and their activities were in the order of as-prepared (unpretreated)<He-pretreated<H2-pretreated. Compared with unpretreated TiO2 (P25), the H2-pretreated Cu/TiO2 demonstrated a 10-fold and 189-fold enhancement in the production of CO and CH4, respectively. This significant enhancement was mainly attributed to the synergy of the following two factors: (1) the formation of surface defect sites promoting CO2 adsorption and subsequent charge transfer to the adsorbed CO2; (2) the existence of Cu+/Cu0 couples that facilitate electron and hole trapping at different sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.