Abstract

In photoelectrochemical (PEC) water splitting, BiVO4 is considered the most promising photoanode material among metal oxide semiconductors because of its relatively narrow optical bandgap and suitable band structure for water oxidation. Nevertheless, until now, the solar-to-hydrogen conversion efficiency of BiVO4 has shown significant limitations for commercialization because of its poor charge transport. Various strategies, including the formation of a heterojunction and doping of electron donors, have been implemented to enhance the charge transport efficiency; however, fundamental approaches are required for further enhancement. In this regard, we report the fundamental approach for BiVO4 thin film photoanodes by fabricating epitaxial oxide thin films with different crystallographic orientations for PEC water splitting. The crystalline anisotropy generally reveals distinct physical phenomena along different crystallographic orientations. In the same vein, in terms of the anisotropic properties of BiVO4...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.