Abstract

Oxygen evolution reaction (OER) is considered the bottleneck that restricting the pace of electrocatalytic hydrogen production. Modulating structure and heterogeneous doping are essential approaches to effectively promote the electrocatalytic efficiency and stability. Herein, three-dimensional (3D) porous Cr doped NiFeP nanoparticles encapsulated in cellulose nanofibrils (CNF) carbon architecture (Cr–NiFeP/NC) with high-efficiency and durable OER performance was constructed. CNF played crucial role on the construction of 3D porous framework and promoting the OER performance significantly. Benefiting from the 3D porous structure, high specific surface area and exposed abundant active sites, the Cr–NiFeP/NC electrocatalyst displayed excellent OER performance, which the overpotential to deliver the current density of 10 mA cm−2 was only 249 mV with a Tafel slope of 51.2 mV dec−1 in 1.0 M KOH, outperforming the RuO2 and other reported electrocatalysts remarkably. In addition, the Cr–NiFeP/NC electrocatalyst exhibited outstanding stability, which the overpotential was only increased by 2.5% after 48 h chronopotential measurement to deliver a current density of 10 mA cm−2 with stable morphology and structure. This work demonstrated an integrated strategy of Cr doping and 3D porous structure modulating employed CNF as skeleton for the efficient and durable OER performance, providing a spark for hydrogen production by water splitting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.