Abstract

AbstractThree kinds of novel carboxyl modification tubular carbon nanofibers (CMTCFs) and MnO2 composites materials (CMTCFs/MnO2) are prepared by combining hyper‐crosslinking, liquid phase oxidation and hydrothermal technology. The complex morphology and crystal phase of MnO2 in CMTCFs/MnO2 are effectively regulated by adjusting the hydrothermal reaction time. The δ‐MnO2 nanosheet‐wrapped CMTCFs (CMTCFs@MNS) are used as anode and compared with the other two CMTCFs/MnO2. Electrochemical analysis shows that CMTCFs@MNS electrode exhibits a large reversible capacity of 1497.1 mAh g−1 after 300 cycles at 1000 mA g−1 and a long cycling reversible capacity of 400.8 mAh g−1 can be maintained after 1000 cycles at 10 000 mA g−1. CMTCFs@MNS manifests an average reversible capacity of 256.32 mAh g−1 at 10 000 mA g−1 after twelve changes in current density. In addition, the structural superiority of CMTCFs@MNS electrode is clarified by characterizing the microscopic morphology and crystal phase of the electrode after electrochemical performance test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.