Abstract

One of the important factors that determine the photoluminescence (PL) properties of gold nanoclusters pertain to the surface. In this study, four Au52(SR)32 nanoclusters that feature a series of aromatic thiolate ligands (-SR) with different bulkiness at the para-position are synthesized and investigated. The near-infrared (NIR) photoluminescence (peaks at 900-940 nm) quantum yield (QY) is largely enhanced with a decrease in the ligand's para-bulkiness. Specifically, the Au52(SR)32 capped with the least bulky p-methylbenzenethiolate (p-MBT) exhibits the highest PLQY (18.3% at room temperature in non-degassed dichloromethane), while Au52 with the bulkiest tert-butylbenzenethiolate (TBBT) only gives 3.8%. The large enhancement of QY with fewer methyl groups on the ligands implies a nonradiative decay via the multiphonon process mediated by C-H bonds. Furthermore, single-crystal X-ray diffraction (SCXRD) comparison of Au52(p-MBT)32 and Au52(TBBT)32 reveals that fewer methyl groups at the para-position lead to a stronger interligand π···π stacking on the Au52 core, thus restricting ligand vibrations and rotations. The emission nature is identified to be phosphorescence and thermally activated delayed fluorescence (TADF) based on the PL lifetime, 3O2 quenching, and temperature-dependent PL and absorption studies. The 1O2 generation efficiencies for the four Au52(SR)32 NCs follow the same trend as the observed PL performance. Overall, the highly NIR-luminescent Au52(p-MBT)32 nanocluster and the revealed mechanisms are expected to find future applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call