Abstract
In computational fluid dynamics, defining precise boundary conditions, especially at inlets, is of great importance. Inlet flows typically exhibit natural turbulence, which is managed in various ways in scale-resolving simulations. Methods to establish turbulent inlet conditions are commonly created using natural transition, uncorrelated oscillations, periodic boundary conditions from auxiliary simulations, or synthetic turbulent fields. In this study, we explore a technique aimed at generating a divergence-free synthetic inflow turbulence with arbitrary anisotropy. The methodology is based on the conventional portrayal of turbulence as consisting of several coherent structures. While our approach adeptly emulates predefined statistical characteristics across different scales, its primary focus is on generating input parameters that impact the airflow within the wake of individual wind turbines and the atmospheric boundary layer within a wind farm. The results are compared with high-resolution velocity experimental measurements, large eddy simulations, and the digital filter-based inlet boundary condition already available in OpenFOAM. The findings demonstrate that the applied inflow generator outperforms the default OpenFOAM filter, particularly in the context of a single wind turbine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.