Abstract

Ferroelectricity is significant in low dimensional structures due to the potential applications in multifunctional nanodevices. In this work, the tailoring angle dependent ferroelectricity is systematically investigated for the nanoribbons and nanowires of puckered group-IV monochalcogenides MX (M = ; X = ). Based on first-principles calculations, it is found that the ferroelectricity of nanoribbon and nanowire strongly depends on the tailoring angle. Firstly, the critical width for the bare nanoribbon of group-IV monochalcogenide is obtained and discussed. As the nanowires are concerned, the ferroelectricity will disappear when the tailoring angle becomes small. At last, H-passivation on the edge and the strain engineering are employed to improve the ferroelectricity of nanoribbon, and it is obtained that H-passivation is beneficial to the enhancement of polarization for nanoribbons tailored near the armchair direction, while the polarization of nanoribbons tailored along the diagonal direction will decrease when the edges are passivated with H atoms, and the tensile strain along the length direction always favors the improvement of ferroelectricity of the considered nanoribbons. Therefore, tailoring angle has great influence on the ferroelectricity of nanoribbons and nanowires, which may be used as an effective way to tune the ferroelectricity and further the electronic structures of nanostructures in the field of nanoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call