Abstract

t-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate ((3R,5R)-2) is an advanced chiral diol intermediate of the cholesterol-lowering drug atorvastatin. KmAKRM5 (W297H/Y296W/K29H/Y28A/T63M) constructed in our previous work, displayed good biocatalytic performance on (3R,5R)-2. In the present work, stepwise evolution was applied to further enhance the thermostability and activity of KmAKRM5. For thermostability enhancement, N109 and S196 located far from the active site were picked out by structure-guided consensus engineering, and mutated by site-directed mutagenesis (SDM). For catalytic efficiency improvement, the residues A30 and T302 adjacent to the substrate-binding pocket were subjected to site-saturation mutagenesis (SSM). As a result, the “best” mutant KmAKRM9 (W297H/Y296W/K29H/Y28A/T63M/A30P/T302S/N109K/S196C) was developed, of which T5015 and Tm were 5.0 °C and 8.2 °C higher than those of KmAKRM5. Moreover, compared to KmAKRM5, KmAKRM9 displayed a 1.9-fold (846 vs 2436 min) and 6.7-fold (126 vs 972 min) longer half-lives at 40 and 50 °C, respectively. Structural analysis suggested that beneficial mutations introduced additional hydrophobic interactions and hydrogen bonds, contributing rigidification of the flexible loops and the increase of internal forces, hence increasing the thermostability and activity. 5 g DCW (dry cell weight) L−1KmAKRM9 completely reduced 350 g L−1t-butyl 6-cyano-(5R)-hydroxy-3-oxo-hexanoate ((5R)-1), within 3.7 h at 40 °C, yielding optically pure (3R,5R)-2 (d.e.p > 99.5%) with a space-time yield (STY) of 1.82 kg L−1 d−1. Hence, KmAKRM9 is a robust biocatalyst for the synthesis of (3R,5R)-2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call