Abstract

With the extensive use of hydrogen energy, hydrogen separation membranes with proton–electron mixed conductors have broad application prospects in hydrogen separation and purification. Herein, La1.85M0.15Ce2O7−δ (M = Li, Na, K, Rb, and Cs; LMC) proton conductors are prepared. The electron paramagnetic resonance, Raman, and X‐ray photoelectron spectroscopy results indicate that the proposed method of replacing part of the La3+ in La2Ce2O7−δ with alkali metal ions produces more oxygen vacancies, which provides more possibilities for ion transport. Among them, La1.85Rb0.15Ce2O7−δ (LRC) exhibits the highest oxygen vacancy concentration. In addition, as the radius of the alkali metal doping ions increases, the corresponding LMC grains also increase. However, an excessively large ionic radius (Cs+) can hinder grain growth. LRC has the largest ionic radius, indicating that it has a smaller grain boundary resistance. This results in the maximum conductivity of the LRC (2.99 × 10−2 S cm−2) in the atmosphere of wet 20% H2 + 80% N2 at 900 °C. Similarly, in the hydrogen permeability test, the LRC exhibits the highest hydrogen flux (2.74 × 10−9 mol cm−2 s−1) at 900 °C. Moreover, an increase in temperature and hydrogen partial pressure on the feed side can promote hydrogen permeability. Therefore, it is a potential material for ceramic hydrogen separation membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call