Abstract
Multistimuli-responsive polymers are important for controlled release. Owing to the fact that these polymers are derived from vinyl-based monomers, their decoration with other molecules is limited. Polysaccharides, especially chitosan (CS) and hyaluronic acid (HA), are pH-responsive biopolymers, whose chemical structures contain reactive functional groups for feasible chemical modifications to obtain add-on functions. The present work demonstrates the introduction of polymers with upper critical solution temperature (UCST) and lower critical solution temperature (LCST) performances onto CS and HA, respectively. By simply varying the mole ratio between the CS-containing UCST polymer and the HA-containing LCST polymer along with adjusting the pH, a polymer system with a UCST-LCST-pH multiresponsive window can be obtained. This multiresponsive window enables us to control the encapsulation and release with repeatability as evidenced from a model study on lysozyme. The present work, for the first time, shows a simple approach to obtain multiresponsive biodegradable polymers through the formation of a single polymer complex to tailor a specific multiresponsive window.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.