Abstract

AbstractA forest planning problem with multiple market locations and multiple products is formulated for a 3,166,000 ha forested region in northern Ontario. The resulting linear programming model is extremely large, with millions of decision variables and tens of thousands of constraints. A modelling method proposed by Hoganson and Rose (1984) was extended and applied successfully for eight model formulations. Optimal, near-feasible solutions were consistently produced in 200 to 300 iterations. Results showed definite, interpretable, patterns in the values of key dual variables that correspond to harvest level constraints in the primal LP and that tie the forest planning problem together.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.