Abstract

The lithium-sulfur (Li-S) battery is an ideal electrochemical energy storage system owing to the high theoretical energy density and acceptable cost of finance and the environment. However, some disadvantages, including low electrical conductivity, poor sulfur utilization, and rapid capacity fading, obstruct its practical application. In this work, 3D carbon foam from a melamine resin is synthesized via high-temperature calcination. Carbon nanotubes (CNTs) and MnO2 are utilized to tailor the properties of the 3D cathode collector in the liquid Li2S6-containing Li-S battery without additional conductive agents, binders, and aluminum foil. Herein, the decorated MnO2 on the carbon fiber foam prolongs the lifespan of the Li-S battery, and adding CNTs is beneficial to enhance the capacity and cyclic performance of the Li-S battery under high sulfur loading. The Li-S battery with a sulfur loading of 3 mg cm-2 possesses a reversible capacity of 437.9 mA h g-1 after 400 cycles at 0.1 C. The capacity could be maintained at 568 mA h g-1 at 0.1 C after 80 cycles when the sulfur loading increases to 6 mg cm-2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.