Abstract

Ineffectiveness of Li-ion batteries (LIBs) in cold climates hinders electronics to work in various conditions including frigid environments, despite high demands. Given that intrinsic properties of LIB materials cause this problem, optimized cell chemistries ultimately are required for low-temperature usage. In this study, Li-metal batteries (LMBs) composed of a Li-metal anode (LMA) stabilized by a localized high-concentration electrolyte (LHCE) are found to significantly enhance low-temperature performance. The LHCE allows the LMA to have compact and regular deposition and excellent plating/stripping efficiency at sub-zero temperatures. The LHCE produces an inorganic-rich solid-electrolyte interphase with larger amounts of Li2 O/LiF interfaces, dominance of ion aggregates in Li+ solvation, and enhanced Li+ transport, which can greatly improve the LMA stability. LMB full cells based on LiNi0.8 Co0.1 Mn0.1 O2 cathodes with the tailored electrolyte show high retentions of 75 and 64 % at -20 and -40 °C, respectively. Furthermore, the LMB configuration retains its charge-discharge capability even at -60 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.