Abstract

Polymer nanotechnology allows manipulating materials microstructure, morphology and compositional variation on the nanometer scale. Thus, it is able to provide materials for many cutting edge applications, from photonics to medical devices to sensors. This article summarizes recent work on template-based fabrication and on the basic properties of one-dimensional polymeric nanostructures and their inherent advantages over their conventional counterparts. The chemistry and physics relevant for the design of these nanostructured materials are discussed and recent advances emphasized. In particular, highlighting the effects of nanoconfinement on material behavior and putting somewhat greater emphasis on molecular motions. Some examples of one-dimensional-based polymeric nanostructures with promising applications for example in the field of tissue engineering are also presented as well as some aspects concerning recyclability of the used templates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call