Abstract

Due to the establishment of common thermoplastics such as polyethylene, polypropylene and polytetrafluoroethylene as substrates for modern electrets, research in this field has seen significant progress in recent decades. However, there still is a need for new substrate materials in order to boost modern-day electret applications. Important targets for a further development are electret substrates with a tailored balance between cost and performance especially at elevated temperatures. In this study, experimental results concerning the charge storage behaviour of poly(2,6-dimethyl-1,4-phenylene ether) (PPE) films and its blends with polystyrene (PS) are presented. As demonstrated, the good electret performance of neat PPE can be further enhanced by the addition of suitable weight fractions of PS, a synergistic electret behaviour that is related to morphological blend parameters such as the packaging density and the presence of PS micro-heterogeneities in the PPE/PS matrix. Most importantly, the results highlighted in this study clearly demonstrate the potential of blending as a promising approach towards satisfying the demands of tomorrows’ electret applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call