Abstract

For materials with coexisting phases, the transition from a random to an ordered distribution of materials often generates new mechanisms. Although the magnetic confinement effect has improved the electromagnetic (EM) performance, the transition from random to ordered magnetic confinement positions remains a synthetic challenge, and the underlying mechanisms are still unclear. Herein, precise control of magnetic nanoparticles is achieved through a spatial confinement growth strategy, preparing five different modalities of magnetic confined carbon fiber materials, effectively inhibiting magnetic agglomeration. Systematic studies have shown that the magnetic confinement network can refine CoNi NPs size and enhance strong magnetic coupling interactions. Compared to CoNi@HCNFs on the hollow carbon fibers (HCNFs) outer surface, HCNFs@CoNi constructed on the inner surface induce stronger spatial charge polarization relaxation at the interface and exhibit stronger magnetic coupling interactions at the inner surface due to the high-density magnetic coupling units at the micro/nanoscale, thereby respectively enhancing dielectric and magnetic losses. Remarkably, they achieve a minimum reflection loss (RLmin) of -64.54dB and an absorption bandwidth of 5.60GHz at a thickness of 1.77mm. This work reveals the microscale mechanism of magnetic confinement-induced different polarization relaxation and magnetic response, providing a new strategy for designing magnetic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.