Abstract

AbstractArrays of nanoparticles exploited in light scattering applications commonly only feature either a periodic or a rather random arrangement of its constituents. For the periodic case, light scattering is mostly governed by the strong spatial correlations of the arrangement, expressed by the structure factor. For the random case, structural correlations cancel each other out and light scattering is mostly governed by the scattering properties of the individual scatterer, expressed by the form factor. In contrast to these extreme cases, it is shown here that hyperuniform disorder in self‐organized large‐area arrays of high refractive index nanodisks enables both structure and form factor to impact the resulting scattering pattern, offering novel means to tailor light scattering. The scattering response from the authors’ nearly hyperuniform interfaces can be exploited in a large variety of applications and constitutes a novel class of advanced optical materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.