Abstract

We present an invariant-based quantum control scheme leading to a highly monochromatic ion beam from a Paul trap. Our protocol is implementable by supplying the segmented electrodes in the trap with voltages of the order of volts. This mitigates the impact of fluctuations in previous designs and leads to a low-dispersion beam of ions. Moreover, our proposal does not rely on sympathetically cooling ions, which bypasses the need of loading different species in the trap-namely, the propelled ion and, e.g. a [Formula: see text] to exert sympathetic cooling-significantly incrementing the repetition rate of the launching procedure. Our scheme is based on an invariant operator linear in position and momentum, which enables us to control the average extraction energy and the outgoing momentum spread. In addition, we propose a sequential operation to tailor the transversal properties of the beam before the ejection to minimize the impact spot and to increase the lateral resolution of the implantation. This article is part of the theme issue 'Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.