Abstract
Thrive for the COx-free hydrogen production via methane decomposition has gained much interest owing to its feasibility and environmental friendliness. Herein, ahydrotalcite based Nickel catalyst was synthesized via co-precipitation method by varying the amount of Nickel concentration and tested for methane decomposition reaction in a fixed bed reactor. In addition, the effect of calcination temperature in the development of the spinel-like structure of as-developed catalyst was comprehensively discussed. It was found that the hydrotalcite based Nickel catalyst prepared at 40% Nickel concentration has the highest performance of above 80% conversion for 7 h of methane decomposition which was owing to its effective diffusion of carbon particles and its spinel-like structure, evidently from the XRD and FESEM analysis. The profound performance monitored here was attributed to the formation of carbon nanofibers (CNFs) on the surface of the catalyst which levitates the active Niospecies on its tips, results in more available active sites for the chemisorptions of the methane molecules. Nevertheless, the excessive of Nickel concentration leads to the detrimental methane decomposition performance, hencepromotes the formation of large particle size and successive development of bulk NiO phases during the reduction process, consequently abnegate the overall methane decomposition reaction. The aforementionedfindingsshow that the spinel-like structure is the key factor in the growth of long uniform CNFs and elevation of active sites on the fibre tips.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.