Abstract

Herein, a facile bionic research platform with fabricated hydrogel composite membrane (HCM) is constructed to uncover the effects of the main components of coffee’s metabolites on MSUM crystallization. Tailored and biosafety polyethylene glycol diacrylate/N-isopropyl acrylamide (PEGDA/NIPAM) HCM allows the proper mass transfer of coffee’s metabolites and can well simulate the process of coffee’s metabolites acting in the joint system. With the validations of this platform, it is shown that chlorogenic acid (CGA) can hinder the MSUM crystals formation from 45 h (control group) to 122 h (2 mM CGA), which is the most likely reason that reduces the risk of gout after long-term coffee consumption. Molecular dynamics simulation further indicates that the high interaction energy (Eint) between CGA and MSUM crystal surface and the high electronegativity of CGA both contribute to the restraint of MSUM crystal formation. In conclusion, the fabricated HCM, as the core functional materials of the research platform, presents the understanding of the interaction between coffee consumption and gout control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call