Abstract

Graphene oxide (GO), as a drug delivery carrier, has attracted considerable attention because of its interesting properties. However, GO tends to aggregate in aqueous solution. Amphiphilic molecules are usually necessary to stabilize GO. The introduction of these non-functional macromolecules on the one hand reduces drug loading, but on the other hand may cause unpredictable side effects. This study proposes a new strategy for stabilizing GO with a functional photothermal agent, IR820 (new indocyanine green) derivative. IR820 derivative results from the conjugation of active targeted lactobionic acid (LA) with IR820 for the formation of IR820-LA. IR820-LA features central aromatic groups that can associate with the GO basal plane through π-π interactions. The flanking moiety of hydrophilic LA and sulfonic groups thus provides steric stabilization of GO in aqueous solution. Moreover, IR820-LA endows GO/doxorubicin (GO/DOX) nanovehicles with fluorescence imaging ability and actively targeted chemo-photothermal therapy. Experimental results both in vitro and in vivo have indicated its good chemo-photothermal therapeutic effect according to its active tumor targeting ability and pH-sensitive drug release characteristics. Therefore, our GO/DOX/IR820-LA nanohybrids can be excellent nanoplatforms for active tumor-targeted chemo-photothermal therapy with imaging guidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.