Abstract

AbstractIn this paper a structural optimization framework is developed to design three-dimensional periodic lattice unit cells that meets specific mechanical requirements. The work is motivated by the high design freedom of additive manufacturing technologies, which enable complex multiscale lattice structures to be printed. An optimized lattice unit cell delivers desired orthotropic elastic material properties, providing a tailored metamaterial. The design variables are the coordinates of lattice skeleton nodes defined within the three-dimensional lattice cell space, and the connectivities between them resulting a strut-skeleton. Genetic algorithm (GA) is combined with posterior particle swarm optimization (PSO) algorithm to establish an integrated topology and shape optimization tool. For the calculation of the elastic properties of the individual lattice cells, an effective Timoshenko beam-based finite element calculation method was developed. The novelty of the work stems from its free topology optimization nature, excluding the strut diameters from the optimization variables. The method is demonstrated by four lattice cell optimization cases, where extreme orthotropic elastic properties were targeted and achieved. The tailored lattice cells represent a metamaterial, that can be used to build a structural component on the macroscopic scale, by stacking the cells periodically together, to fill the macroscopic 3D design space. This framework is a strong basis that can be extended to meet further nonlinear metamaterial requirements, such as energy absorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call