Abstract

The carbon nanotube (CNT) has been chosen as an excellent candidate for acquiring high dielectric constant polymer matrix composites according to percolation theory. However, its nanometer-scale dimension makes it naturally form bundles, which makes it difficult to use. Compared with chemical modification of multiwalled carbon nanotube (MWNT), the incorporation of the third component (nanosized BaTiO3 (NBT)) particles into MWNT/polymer composites would realize the uniform dispersion of MWNT without sacrificing the inherent properties of MWNT. We reported a three-phase (NBT-MWNT)/polyvinylidene fluoride nanocomposite with a significantly enhanced dielectric constant (643 at 103 Hz) and a gradually decreased loss, which was extremely hard to be realized at the same time for composites only filled by conductive MWNT filler. Adjustable dielectric properties were discovered by employing the three-phase system due to the nanocomposites microstructure change. Furthermore, impedance analysis and simulated circuit confirmed the existence of microcapacitors comprised of MWNT- and NBT-rich composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.