Abstract
A new Cd(II)-imprinting polymer was synthesised based on glycidyl methacrylate (Fe3O4@GMA@IIP) and employed to develop a dispersive magnetic solid-phase extraction method for the preconcentration prior to the determination of Cd(II) from the environmental samples. A central composite design (CCD) based on response surface methodology was used for optimization of the process variables and the material shows the promising saturation adsorption capacity of 28.21mgg-1 under the optimum pH of 4.9 within 15.2min at saturation concentration 914μgmL-1. The experimental data were well described by Sips isotherm model and Brouers-Sotolongo fractal kinetic model that indicated the surface heterogeneity and involvement of both chemisorption and physisorption process. Thermodynamic results documented the endothermic and spontaneous nature of adsorption. The sorbent manifest the economic feasibility maintaining its sorption efficiency after the regeneration by 1M HNO3 and reusability up to 6 adsorption/desorption cycles. The developed method exhibited the preconcentration factor of 30 and a high degree of tolerance for matrix ions. Limit of detection (LOD) and quantification (LOQ) were calculated as 3.054 and 10.182μg L-1 respectively. The developed method was validated by the standard reference material and spiking addition method in real samples, and obtained results showed good agreement in accordance with spiking values. The ease of magnetic separation, high selectivity, good adsorption capacity and faster kinetics made this material a promising candidate for Cd(II) determination in various food and aqueous samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.