Abstract
Fructo-oligosaccharide (FOS) belongs to the group of short inulin-type fructans and is one of the most important non-digestible bifid-oligosaccharides capable of biotransforming sucrose using fructosyltransferase (FTase). However, there are no immobilized FTase products that can be successfully used industrially. In this study, diatomite was subjected to extrusion, sintering and granulation to form diatomaceous earth particles that were further modified via chitosan aminomethylation for modification. FTase derived from Aspergillus oryzae was successfully immobilized on the modified support via covalent binding. The immobilized enzyme activity was 503 IU g-1 at an enzyme concentration of 0.6 mg mL-1, immobilization pH of 7.0 and contact time of 3 h. Additionally, the immobilization yield was 56.91%. Notably, the immobilized enzyme was more stable under acidic conditions. Moreover, the half-life of the immobilized enzyme was 20.80 and 10.96 times as long as that of the free enzyme at 45 and 60 °C, respectively. The results show good reusability, as evidenced by the 84.77% retention of original enzyme activity after eight cycles. Additionally, the column transit time of the substrate was 35.56 min when the immobilized enzyme was applied in a packed-bed reactor. Furthermore, a consistently high FOS production yield of 60.68% was achieved and maintained over the 15-day monitoring period. Our results suggest that immobilized FTase is a viable candidate for continuous FOS production on an industrial scale. © 2024 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.