Abstract
Postoperative adhesion and occlusion remain a serious issue associated with various surgeries, including endoscopic surgery, in which proliferated fibrous tissues stick to adjacent tissues and often cause severe complications. Cell sheet engineering has emerged as an effective approach not only for cell transplantation but also for the treatment of postoperative adhesion and occlusion. However, as the tissues in the body, such as middle ear and small intestine, and typical operative sites are non-flat and spatially complicated, tailored cell sheets with three-dimensional (3D) configurations may lead to widespread use of this approach. In the present study, we used microstereolithography, biocompatible gold plating, and electrochemical cell detachment to achieve this purpose. Various objects with dimensions ranging from millimeter- to micrometer-scale were fabricated with photocurable resin using lab-made equipment for microstereolithography. To coat the fabricated objects with a thin gold layer, conventional cyanide-based gold plating was unusable because it severely damaged almost all cells. Electroless non-cyanide gold plating we prepared was cytocompatible and suitable for electrochemical cell detachment. Cell sheets on the gold-plated substrate could be directly transplanted into a mouse intraperitoneally using electrochemical cell detachment. We further demonstrated that cell sheets grown on gold-coated 3D objects were rapidly detached along with the desorption of electroactive-oligopeptide monolayer and transferred to a surrounding hydrogel. This approach may provide a promising strategy to prepare and directly transplant tailor-made cell sheets with suitable configurations.
Highlights
Endoscopic surgery has been widely recognized as a less invasive approach than conventional open surgery
To apply electrochemical cell detachment to a complicated configuration fabricated using microstereolithography (Fig. 1), it is necessary to find an appropriate approach for the preparation of a stable gold layer on a photocurable resin
Gold plating has been used for commercial medical apparatus such as surgical scissors and tweezers
Summary
We investigated several possible factors responsible for this phenomenon, including fine surface structures and plating bath components (details not shown, due to confidential corporate information), and eventually determined that a little cyanide remained in the gold layer, which seriously damaged the cells. This was determined by observing the cells attached to the gold surface only after treatment with a strong reductant, NaBH4 (data not shown). As tiopronin has been used for the treatment of diseases associated with cysteine disulfide, Non-cyanide Cyanide-
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.