Abstract

A facile anisotropic surface modification and etching strategy is presented for the synthesis of hollow structured ZIF-67 nanoframes. The strategy uses structural and compositional distinctions between each crystallographic facet of truncated rhombic dodecahedrons ZIF-67 (tZIF-67 RDs) and the moderate coordinating and etching effects of cyanuric acid (CA). The CA can anisotropically modify and protect the {110} facets from etching, causing the six {100} facets be selectively etched via an inside-out manner, and finally forming the hollow nanoframes. The surface-modified hollow tZIF-67 RDs can be facet-selectively etched by metal salts in an outside-in manner to give metal-doped tZIF-67 nanoframes. After calcination, the metal-tZIF-67 hybrids are converted into metal-Co alloy/C composite catalysts with hollow nanoframed structures. The PtCo/C catalyst with only 5.9 wt % Pt exhibits high catalytic activities and stabilities in the hydrogen evolution reaction (HER) in acidic solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call