Abstract
We report a simple and commercially viable strategy to produce thermoplastic composite foams using synergistic foaming approaches – incorporating porous-shell hollow-interior glass spheres (PHGS) as a filler and utilizing expandable thermoplastic microspheres (EMS) as a physical blowing agent – for thermal insulation applications. The EMS in these composites ensure formation of highly porous, low-density foam while the PHGSs provide low thermal conductivity and lightweight mechanical reinforcement. Through systematic optimization of the PHGS and EMS loadings, a lightweight, and robust insulation with thermal resistivity greater than 27.7 m·K/W (R/in. > 4) is achieved. Notably, the fabricated foams also demonstrated comparable compressive strength than some commercial thermoplastic insulating materials. Through optimization of PHGS and EMS concentrations, results indicated similar thermal performance characteristics at varying foam densities, while higher loadings of both components lead to reduced insulation performance and weak mechanical stability of the foams. The results obtained, when coupled with the potential scalability and tailor ability of the overall process towards targeted insulation performance, not only endows competitiveness with current commercial thermoplastic insulating materials but also offers great promise for the development of unique thermoplastic composite foams for a variety of insulation systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.