Abstract

Solar-driven interfacial evaporation technology has become an effective approach to alleviate freshwater shortage. To improve its evaporation efficiency, the pore-size dependence of the water transport rate and evaporation enthalpy in the evaporator should be further investigated. Based on the transportation of water and nutrients in natural wood, we facilely designed a lignocellulose aerogel-based evaporator using carboxymethyl nanocellulose (CMNC) cross-linking, bidirectional freezing, acetylation, and MXene-coating. The pore size of the aerogel was adjusted by controlling its CMNC content. When the channel diameter of the aerogel-based evaporator increased from 21.6 to 91.9 μm, the water transport rate of the proposed evaporator increased from 31.94 to 75.84 g min-1, while its enthalpy increased from 1146.53 to 1791.60 kJ kg-1. At a pore size of 73.4 μm, the evaporation enthalpy and water transport rate of the aerogel-based evaporator achieved a balance, leading to the best solar evaporation rate (2.86 kg m-2 h-1). The evaporator exhibited excellent photothermal conversion efficiency (93.36%) and salt resistance (no salt deposition after three cycles of 8 h). This study could guide the development of efficient solar-driven evaporators for seawater desalination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.