Abstract

AbstractPortable devices have become lightweight, flexible, and even stretchable such that skin‐like electronics are widely applicable, including in biomedical devices, soft robotics, and human/machine interfaces. Rendering these devices soft and flexible is highly desirable, as this would enable them to interact seamlessly with human skin and improve their wearing comfort. We demonstrate a convenient but effective method to fabricate flexible conducting films. These films consist of electrospun polyurethane (PU) fibers as the flexible substrate onto which copper was deposited. These Cu‐PU films have excellent conductivity, and their resistance only increases slightly after extensive folding, even when folded into a paper crane with a resistance of 1.8 Ω. Furthermore, Cu‐PU films can sense tension strength and exhibit stable Joule electrothermal performance. The Cu‐PU‐based heating glove could be heated to 40 °C in 30 s by applying 2 V. The simple but effective procedure presented here is suitable to fabricate flexible conducting film and may also promote the development of portable and flexible electronic products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.