Abstract
This work concerns the development of molecularly imprinted polymers (MIPs) for the selective extraction of dimethoate (dmt) and deltamethrin (dm) from food matrices. To achieve this goal, the non-covalent methodology has been applied for the preparation of MIPs using metacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) and triethylene glycol dimethacrylate (TEGDMA) as cross-linkers in order to evaluate the influence of the nature of the cross-linker on the efficiency and selectivity of those MIPs for the target pesticides. Non-imprinted polymers (NIPs), which do not contain template, have been also prepared in parallel with the MIP synthesis using the same synthetic protocol to assess the specificity of the interactions. Chemical and physical characterization was carried out using conventional techniques, such as Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and thermogravimetric analysis (TGA). Morphological characterization of MIPs and NIPs has been also performed using scanning electron microscopy (SEM) in order to assess the polymer’s surface topography. The performance of each polymer was evaluated by conducting binding property measurements, namely imprinting factor determinations and adsorption studies using high performance liquid chromatography (HPLC). The results obtained in this study seem to show that there is a correlation between the polymer structure (including its physical characteristics) and their binding properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.