Abstract
The most commonly used dewatering technologies for the filtration of tailings from ore processing are pressure filters, filter presses, belt filters and rotary vacuum disc filters. The vacuum disc filter type in around 80% of all applications is the most economical of these technologies in terms of capital and operating cost, especially when modern high performance disc filters are used. The Boozer disc filter is a big diameter high performance vacuum disc filter that has set the pattern in a multitude of applications including the alumina industry and in dewatering coal slurries. In the past decade, this type of disc filter has established itself in applications of tailings dewatering, such as tailings from gold/copper, zinc and gold/silver mines. The reasons for its successful operation in tailings dewatering are: (a) high throughput and dewatering performance, (b) operational reliability even in the case of varying feed conditions, (c) simple and robust design, (d) ease of maintenance, (e) a small footprint. To achieve higher solids throughput rates, or to achieve the lowest possible filter cake moisture, HiBar filtration and HiBar steam pressure filtration offer new solutions in tailings dewatering. HiBar filtration and the HiBar steam pressure filtration are advanced continuous pressure filtration processes realised on rotary disc filters that are installed in a pressure vessel. The application of hyperbaric pressure of up to 6 bar (instead of a vacuum) ensures a high filtration rate and dewatering capability even with filter cakes of fine particles where high cake resistance and capillary forces in the cake must be overcome. With HiBar steam pressure filtration, the use of steam under special conditions improves demoisturing to the furthest extent, leading to the lowest values of moisture content. The drier HiBar filter cake improves the cake handling and disposal with steeper dumping slopes, resulting in reduced disposal area and improved safety of the disposal site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.