Abstract

Two apoptotic events take place during embryonic development of Ciona intestinalis. The first concerns extra-embryonic cells and precedes hatching. The second controls tail regression at metamorphosis, occurs through a polarized wave originating from tail extremity, and is caspase dependent. This was shown by: (1) in vivo incorporation of a fluorescent marker of caspase activation in different cell types of the tail; (2) detection of an activated form of caspase 3-like protein by western blotting; and (3) failure of 30% of larvae to undergo metamorphosis after treatment of fertilized eggs with a pan-caspase inhibitor. In addition, Ciona embryos express a single ERK protein, specifically phosphorylated at metamorphosis. ERK activation was shown to be located in cells of the tail. Addition of MEK inhibitor in the culture medium prevented ERK activation and metamorphosis. In silico analysis of Ciona genome pointed to 15 caspases with high homology with humans, and a single ERK gene with high homology to both mammalian ERK1 and ERK2. It is concluded that the sequence of events leading to metamorphosis includes ERK phosphorylation followed by caspase-dependent apoptosis and tail regression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.