Abstract

The selection of upper order statistics in tail estimation is notoriously difficult. Most methods are based on asymptotic arguments, like minimizing the asymptotic mse, that do not perform well in finite samples. Here we advance a data driven method that minimizes the maximum distance between the fitted Pareto type tail and the observed quantile. To analyse the finite sample properties of the metric we organize a horse race between the other methods. In most cases the finite sample based methods perform best. To demonstrate the economic relevance of choosing the proper methodology we use daily equity return data from the CRSP database and find economic relevant variation between the tail index estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.