Abstract

The effect of two commonly used methods to immobilize the animals, viz. tube restrainer and wrapping in a diaper (chux) on the tail flick latency in immersion test, was evaluated in mice using a stimulus temperature of 50°C. The animals were immobilized either in the tube or chux briefly (25–30 sec) during the tail flick measurements. The basal tail flick latency was 2.8 ± 0.2 in the tube restrained and 5.5 ± 0.3 sec in chux restrained groups ( p < 0.001). The analgesic effect of morphine (1, 3, 4, 7, and 10 mg/kg) was significantly higher in the chux-restrained animals as indicated by the dose ratio of 2.16 for the 50% analgesic response in the chux versus tube restrained mice. The tail flick latency, 15 min after naloxone injection (1 and 3 mg/kg), expressed as % of predrug latency was significantly reduced in the chux- but not the tube-restrained group. The hyperalgesic effect of naloxone could not be detected in chux-restrained animals, when the water temperature was increased to 55°C. The results demonstrate that the restraining procedure will influence the analgesic effects of test drugs in tail immersion test. Furthermore, the stimulus temperature appears to be an important variant that could influence the results in this test. The present results demonstrate the hyperalgesic effect of naloxone after systemic administration in the tail immersion test and supports the concept that tail flick response is tonically inhibited by endogenous opioid systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.