Abstract
AbstractThe classical occupancy problem is concerned with studying the number of empty bins resulting from a random allocation of m balls to n bins. We provide a series of tail bounds on the distribution of the number of empty bins. These tail bounds should find application in randomized algorithms and probabilistic analysis. Our motivating application is the following well‐known conjecture on threshold phenomenon for the satisfiability problem. Consider random 3‐SAT formulas with cn clauses over n variables, where each clause is chosen uniformly and independently from the space of all clauses of size 3. It has been conjectured that there is a sharp threshold for satisfiability at c* ≈︁ 4.2. We provide a strong upper bound on the value of c*, showing that for c > 4.758 a random 3‐SAT formula is unsatisfiable with high probability. This result is based on a structural property, possibly of independent interest, whose proof needs several applications of the occupancy tail bounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.