Abstract
TAIL ASYMPTOTICS OF SIGNAL-TO-INTERFERENCE RATI ODISTRIBUTION IN SPATIAL CELLULAR NETWORK MODELSWe consider a spatial stochastic model of wireless cellular networks, where the base stations BSs are deployed according to a simple and stationary point process on Rd, d > 2. In this model, we investigate tail asymptotics of the distribution of signal-to-interference ratio SIR, which is a key quantity in wireless communications. In the case where the pathloss function representing signal attenuation is unbounded at the origin, we derive the exact tail asymptotics of the SIR distribution under an appropriate sufficient condition. While we show that widely-used models based on a Poisson point process and on a determinantal point process meet the sufficient condition, we also give a counterexample violating it. In the case of bounded path-loss functions, we derive a logarithmically asymptotic upper bound on the SIR tail distribution for the Poisson-based and -Ginibrebased models. A logarithmically asymptotic lower bound with the same order as the upper bound is also obtained for the Poisson-based model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.