Abstract

The generalized secant hyperbolic distribution (GSHD) was recently introduced as a modeling tool in data analysis. The GSHD is a unimodal distribution that is completely specified by location, scale, and shape parameters. It has also been shown elsewhere that the rank procedures of location are regular, robust, and asymptotically fully efficient. In this article, we study certain tail weight measures for the GSHD and introduce a tail-adaptive rank procedure of location based on those tail weight measures. We investigate the properties of the new adaptive rank procedure and compare it to some conventional estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.