Abstract

Taguchi’s T-method is a new prediction technique under the Mahalanobis-Taguchi system to predict unknown output or future states based on available historical information. Conventionally, in optimizing the T-method prediction accuracy, Taguchi’s orthogonal array is utilized to determine a subset of significant features to be used in formulating the optimal prediction model. This, however, resulted in a sub-optimal prediction accuracy due to its fixed and limited feature combination offered for evaluation and lack of higher-order feature interaction. In this paper, a swarm-based binary bat optimization algorithm with a nearest integer discretization approach is integrated with the Taguchi’s T-method. A comparative study is conducted by comparing the performance of the proposed method against the conventional approach using mean absolute error as the performance measure on four benchmark case studies. The results from experimental studies show a significant improvement in the T-method prediction accuracy. A reduction in the total number of features results in a less complex model. Based on the general observation, the nearest integer-based binary bat algorithm successfully optimized the selection of significant features due to recursive and repetitive searchability, in addition to its adaptive element in response to the current best solution in guiding the search process towards optimality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.