Abstract

Sneutrino resonances at a high-energy linear ${e}^{+}{e}^{\ensuremath{-}}$ collider may be one of the clearest signals of supersymmetry without $R$ parity, especially when the $R$-parity-violating coupling is too small to produce observable excesses in four-fermion processes. However, there is no guarantee that the sneutrino pole will lie anywhere near the machine energy. We show that associated photon production induces the necessary energy spread, and that the resonance then leaves a clear imprint in the photon spectrum. It follows that tagging of a hard monoenergetic photon for a variety of possible final states provides a realistic method of separating sneutrino resonance signals from the standard model backgrounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.