Abstract
We report on chunk tagging methods for German that recognize complex non-verbal phrases using structural chunk tags with Conditional Random Fields (CRFs). This state-of-the-art method for sequence classification achieves 93.5% accuracy on newspaper text. For the same task, a classical trigram tagger approach based on Hidden Markov Models reaches a baseline of 88.1%. CRFs allow for a clean and principled integration of linguistic knowledge such as part-of-speech tags, morphological constraints and lemmas. The structural chunk tags encode phrase structures up to a depth of 3 syntactic nodes. They include complex prenominal and postnominal modifiers that occur frequently in German noun phrases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.